Inorg. Chem. 2002, 41, 3596–3598

Inorganic Chemistry

Peculiar Transformation of a Nonaromatic Al₄Cl₄(NH₃)₄ into an Aromatic Na₂Al₄Cl₄(NH₃)₄

Aleksey E. Kuznetsov and Alexander I. Boldyrev*

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322

Received April 3, 2002

We analyzed the molecular orbitals for a Al₄Cl₄(NH₃)₄ compound, which is a model of the (AlBr•NEt₃)₄ crystal structure recently reported by Schnöckel and co-workers. We found that even though Al₄Cl₄(NH₃)₄ contains a planar square Al₄ cluster it is not an aromatic compound. However, the addition of two sodium atoms to Al₄Cl₄(NH₃)₄ yields a new Na₂Al₄Cl₄(NH₃)₄ compound which is a π -aromatic molecule. We hope that prediction of this new compound will facilitate a synthesis of aluminum aromatic solids.

In 1994, Schnöckel and co-workers¹ reported the synthesis and the characterization of the first compound (AlBr•NEt₃)₄ containing a planar square Al₄ cluster. Such an unusual structure caught our attention because we recently explained the planar square structure in a few gas-phase species containing the Al_4^{2-} dianion on the basis of the presence of aromaticity.² While we are not aware of the synthesis of any solid-state compound containing the Al42- dianion, the organogallium compound, $K_2[Ga_4(C_6H_3-2,6-Trip_2)_2]$ (Trip = C_6H_2 -2,4,6-*i*Pr₃), with the Ga4²⁻ cluster, has been synthesized by Twamley and Power.³ Twamley and Power initially interpreted bonding in their gallium cluster without involving aromaticity. We reinterpreted the chemical bonding in the Ga4²⁻ cluster based on ab initio calculations and an experimental photoelectron study of the NaGa4- cluster and ab initio calculations of the model K₂Ga₄(C₆H₅)₂ molecule.⁴ We have shown that the planar square structure of Ga_4^{2-} is in fact due to its aromaticity. In the current communication, we explore a possibility of aromaticity in Schnöckel's (AlBr-NEt₃)₄ compound.

We optimized the geometry and calculated harmonic frequencies at the B3LYP/3-21+G* and MP2/3-21+G* levels of theory for a model $Al_4Cl_4(NH_3)_4$ compound and

found that it has a minimum of C_s symmetry, which is slightly lower in energy then the high-symmetry D_{2d} structure (Figure 1a). The minimum structure contains a planar square

Figure 1. Optimized structures at the B3LYP/3-21+G* level of theory: (a) Al₄Cl₄(NH₃)₄ (D_{2d} , $^{1}A_{1}$) and (b) Na₂Al₄Cl₄(NH₃)₄(D_{2d} , $^{1}A_{1}$).

Al₄ cluster similar to what Schnöckel and co-workers reported for their (AlBr•NEt₃)₄ compound. Molecular orbitals of the Al₄Cl₄(NH₃)₄ compound related to the Al₄ cluster are shown in Figure 2 (the D_{2d} structure was used in order to simplify the interpretation of the MOs). These molecular orbitals can be interpreted in terms of the classical twoelectron two-center bonds. The HOMO-14, HOMO-13 (HOMO-13'), and HOMO-12 can be interpreted as the symmetry adapted linear combinations of four Al-N dative bonds, and the HOMO-11, HOMO-1 (HOMO-1'), and HOMO can be interpreted as the symmetry adapted linear combinations of four two-center two-electron Al-Al bonds. This is a qualitative interpretation of delocalized MOs. To get a more quantitative analysis of bonding, we localized the molecular orbitals using natural bonding analysis (NBO)⁷ at the RHF/6-311++G** level of theory. After the localiza-

^{*} To whom correspondence should be addressed. E-mail: boldyrev@ cc.usu.edu.

Mocker, M.; Robl, C.; Schnöckel, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 1754.

⁽²⁾ Li, X.; Kuznetsov, A. E.; Zhang, H. F.; Boldyrev, A. I.; Wang, L. S. Science, 2001, 291, 859.

⁽³⁾ Twamley, B.; Power, P. P. Angew. Chem., Int. Ed. 2000, 39, 3500.

⁽⁴⁾ Kuznetsov, A. E.; Boldyrev, A. I.; Li, X.; Wang, L. S. J. Am. Chem. Soc. 2001, 123, 8825.

⁽⁵⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.7; Gaussian, Inc.: Pittsburgh, PA, 1998.

COMMUNICATION

Figure 2. Molecular orbital pictures⁶ of Al₄Cl₄(NH₃)₄ (a) and Na₂Al₄Cl₄(NH₃)₄ (b). LUMO shown for Al₄Cl₄(NH₃)₄ was calculated as HOMO for doubly charged anion Al₄Cl₄(NH₃)₄^{2–}.

tion, we indeed found four two-electron two-center Al-Al bonds (96% localization), four highly polar Al-N bonds (8% of Al and 92% of N; 99% localization), four highly polar Al-Cl bonds (15% of Al and 85% of Cl; 99% localization), twelve N-H bonds (71% of N and 29% of H; 99% localization), and twelve lone pairs of Cl (99% localization). Thus Schnöckel's compound is not a π -aromatic system like the Al_4^{2-} and the Ga_4^{2-} clusters in Na_2Al_4 and in $K_2[Ga_4-$ (C₆H₄-2,6-Trip₂)₂], respectively. Chemical bonding in the (AlBr•NEt₃)₄ compound can be simply interpreted on the basis of the classical two-center two-electron bonds. While we were disappointed that such a beautiful compound as $(AlBr \cdot NEt_3)_4$ is not aromatic even though it has a planar square Al₄ cluster, we noticed that our model compound has a low-lying unoccupied molecular orbital which is a fourcenter π -bond. We optimized the geometry for the Na₂Al₄-Cl₄(NH₃)₄ molecule at the same level of theory (Cartesian coordinates, harmonic frequencies, and total energies of all species studied here are available from the authors upon request) with a hope that two sodium atoms might donate a pair of electrons to the π -MO which will make this new molecule aromatic. The optimized structure is shown in Figure 1b, and molecular orbitals for the $Na_2Al_4Cl_4(NH_3)_4$ structure are presented in Figure 2b. One can see that an aromatic MO (7b₂-HOMO) is indeed present in Na₂Al₄Cl₄-(NH₃)₄. Our conclusion on the aromaticity of Na₂Al₄Cl₄- $(NH_3)_4$ is based solely on the molecular orbital analysis. We previously made a similar conclusion about aromaticity in Al_4^{2-} and MAl_4^{-} (M = Li, Na, Cu) on the basis of the presence of the delocalized π -MO.² The authors of two follow up theoretical works^{8,9} arrived at the same conclusions based on the ring current in Al_4^{2-} and MAl_4^{-} (M = Li, Na,

Cu) induced by a perpendicular magnetic field. Therefore, we are confident that our conclusion on the aromatic nature of $Na_2Al_4Cl_4(NH_3)_4$ is sound. We roughly evaluated the energy of reaction 1.

$$Al_4Cl_4(NH_3)_4 + Na_2 \rightarrow Na_2Al_4Cl_4(NH_3)_4$$
(1)

 $(\Delta E = -30 \text{ kcal/mol} \text{ at the } B3LYP/6-311++G^{**//}$ B3LYP/3-21+G* and $\Delta E = -45.5$ kcal/mol at the MP2/ 6-311++G**//MP2/3-21+G* levels of theory.) Calculated exothermicity was found to be very high which makes this reaction plausible. In this work, on the basis of the molecular orbital analysis and ab initio calculations, we predict that the nonaromatic Al₄Cl₄(NH₃)₄ compound can be transformed into the aromatic Na₂Al₄Cl₄(NH₃)₄ compound upon addition of two sodium atoms. This transformation occurs when a planar nonaromatic Al₄ cluster becomes an aromatic butterfly structure. At first glance, the transition from a planar to a butterfly structure in the Al₄ cluster contradicts our claim that Al₄Cl₄(NH₃)₄ is nonaromatic and Na₂Al₄Cl₄(NH₃)₄ is aromatic. However, this contradiction can be resolved. We believe that the butterfly distortion is due to the strong interactions between Cl⁻ anions and Na⁺ cations in the Na₂-Al₄Cl₄(NH₃)₄ compound (Figure 1b) and not due to the lack of aromaticity in the last structure. To test the influence of the interactions between Cl⁻ anions and Na⁺ cations in the Na₂Al₄Cl₄(NH₃)₄ compound, we performed additional calculations of the Al₄Cl₄(NH₃)₄²⁻ dianion. We found that the dianion indeed has an almost planar structure for the central Al₄ cluster. If the salt Na₂(AlBr•NEt₃)₄ will be made, its aromatic nature can be tested through shortening Al-Al bonds in the aluminum cluster. According to our calculations, the Al-Al bonds are shorter in Na₂Al₄Cl₄(NH₃)₄ than in Al₄- $Cl_4(NH_3)_4$ by about 0.10 Å at both levels of theory. That is close to the similar differences (0.14 Å) in carbon-carbon bonds in benzene and cyclohexene.¹⁰ Chemical bonding

⁽⁶⁾ The MO pictures were made using the MOLDEN3.4 program: Schaftenaar, G. MOLDEN3.4; CAOS/CAMM Center: The Netherlands 1998.

⁽⁷⁾ Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev, 1988, 88, 899.

⁽⁸⁾ Fowler, P. W.; Havenith, R. W. A.; Steiner, E. Chem. Phys. Lett. 2001, 342, 85.

⁽⁹⁾ Juselius, J.; Straka, M.; Sundholm, D. J. Phys. Chem. A 2001, 105, 9939.

⁽¹⁰⁾ Handbook of Chemistry and Physics, 77th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1996–1997.

COMMUNICATION

between sodium and Al₄Cl₄(NH₃)₄ in Na₂Al₄Cl₄(NH₃)₄ is rather ionic. Calculated effective atomic charges on sodium atoms are very high, +0.85 e (natural population analysis at the MP2/6-311++G** level of theory), and they clearly show that two electrons are primarily localized on π -MO of the aluminum cluster.

We stress that the aromatic Al₄ cluster in Na₂Al₄Cl₄(NH₃)₄ is very different from the aromatic Al₄ and Ga₄ clusters in Na₂Al₄ and in K₂[Ga₄(C₆H₄-2,6-Trip₂)₂], respectively. In the last two species, Al₄ and Ga₄ clusters are actually doubly σ and π -aromatic, while the former Al₄ cluster in Na₂Al₄Cl₄- $(NH_3)_4$ is only π -aromatic. We hope that the predicted aromatic compound will facilitate the synthesis of new solidstate compounds containing aromatic Al₄ clusters and thus further extend aromaticity concepts into inorganic and organometallic chemistry.

Acknowledgment. Work was done at Utah State University and supported by the donors of the Petroleum Research Fund (ACS-PRF Grant 35255-AC6), administered by the American Chemical Society.

IC0256314